교수소개

김태웅 교수

전공 수자원공학
연구실 수자원공학연구실

연락처 : 031-400-5184

주요 연구분야로는 기후변화를 고려한 비정상성 수문빈도해석우리나라 수문특성을 고려한 가뭄지수 개발 및 가뭄위험 평가태풍·돌발홍수로 인한 극치수문사상의 변화 경향성 평가가 있다.

 

 학력

1997 고려대학교 토목환경공학과공학사

1999 고려대학교 토목환경공학과공학석사

2003 The University of Arizona, USA. Civil Engineering and Engineering Mechanics, PhD

 

 수상경력

2015 한국수자원학회 우수논문발표상

2015 대한토목학회 우수논문발표상

2014 소방방재청 소방방재청장 표창

2013 한국과학기술단체총연합회 과학기술우수논문상

2013 한양대학교 강의우수교원

2013 대한토목학회 우수논문발표상

2013 한국방재학회 우수논문발표상

2012 한국방재학회 우수논문발표상

2010 대한토목학회 우수논문발표상

2009 한국수자원학회 우수논문발표상

2009 대한토목학회 표창

2009 한국습지학회장 표창

2009 한국방재학회 우수논문발표상

2007 한국수자원학회장 표창

2007 한양대학교 강의우수교원

 

 저서

내 일을 설계하고 미래를 건설한다(대한토목학회)

7th World Water Forum Science & Technology Process White Paper (Science & Technology Process)

 

 연구수행실적

국민안전처풍수해 직접간접 피해를 고려한 피해 산정 및 예측 기술개발(풍수해 예측결과 신뢰도 평가기법 개발), 2015.05 ~ 2019.04, 연구비 609,000,000

국토교통과학기술진흥원기후변화 대비 수자원 적응기술 개발(유역 및 권역별 극한 물부족 Emergency Plan 수립), 2014.04 ~ 2019.06, 연구비 838,100,000

한국연구재단Bayesian Network 모델 기반의 수문학적 가뭄위험도 평가기법 개발, 2013.06 ~ 2016.05, 연구비 150,930,000

국민안전처(구 소방방재청), 방재산업 육성·발전 방안 연구, 2013.05 ~ 2014.04, 연구비 150,000,000

기상청수요자 중심의 수문기상정보활용 연구용역, 2014.02 ~ 2014.09, 연구비 27,263,636

국민안전처(구 소방방재청), 홍수예경보 통합모형 기반기술 구축(4세부 중소하천유역 홍수범람 모의 구축), 2011.04 ~ 2012.04, 연구비 50,000,000

국민안전처(구 소방방재청), 내배수 홍수방재 시설물의 성능평가 및 최적 운영기술 개발(내수침수 방어시설의 방재성능 평가절차 및 기법 개발), 2011.04 ~ 2013.03, 연구비 90,000,000

국민안전처(구 소방방재청), 국가 가뭄재해 상황관리 정보시스템 구축(가뭄관리를 위한 물공급 체계 방안 및 가뭄 피해 저감을 위한 대책 방안), 2011.04 ~ 2013.03, 연구비 15,000,000

국민안전처(구 소방방재청), 대규모 하천정비에 따른 자연재해 환경변화 분석 및 방재체계 재구축(우리 연구 주제 추가할 것), 2010.08 ~ 2012.07, 연구비 81,000,000

 

 최근 5년 주요논문실적

1.  Ajmal, M., Moon, G.-W., Ahn, J.-H., and Kim, T.-W. (2015). “Investigation of SCS-CN and its inspired modified models for runoff estimation in South Korean watersheds.” Journal of Hydro-environment Research, 9, 592-603.

2.  Ajmal, M., Waseem, M., Wi, S., and Kim, T.-W. (2015). “Evolution of a parsimonious rainfall-runoff model using soil moisture proxies.” Journal of Hydrology, 530, 623-633.

3.  Waseem, M., Ajmal, M., and Kim, T.-W. (2015). “Development of a new composite drought index for multivariate drought assessment.” Journal of Hydrology, 527, 30-37.

4.  Waseem, M., Ajmal, M., and Kim, T.-W. (2015). “Ensemble hydrological prediction of streamflow percentile at ungauged basins in Pakistan.” Journal of Hydrology, 525, 130-137.

5.  Waseem, M., Shin, J.Y., and Kim, T.-W. (2015). “Comparing spatial interpolation schemes for constructing a flow duration curve in an ungauged basin.” Water Resources Management, 29(7), 2249-2265.

6.  Yoo, J., Kwon, H.-H., Do, B.-J., Rajagopalan, B., and Kim, T.-W. (2015). “Identifying the role of typhoons as drought busters in South Korea based on hidden Markov chain models.” Geophysical Research Letters.

7.  Ajmal, M., Waseem, M., Ahn, J.-H. and Kim, T.-W. (2015). “Improved runoff estimation using event-based rainfall-runoff models.” Water Resources Management, 29, 1995-2010.

8.  Ajmal, M., and Kim, T.-W. (2015). “Quantifying excess stormwater using SCS-CN-based rainfall runoff models and different curve number determination methods.” Journal of Irrigation and Drainage Engineering, 141(3), 04014058.

9.  Kim, H., Park, J., Yoo, J.-Y., and Kim, T.-W. (2015). “Assessment of drought hazard, vulnerability, and risk: a case study for administrative districts in South Korea.” Journal of Hydro-environment Research, 9, 28-35.

10.  Shin, J.Y., Chen, S., and Kim, T.-W. (2015). “Application of Bayesian Markov Chain Monte Carlo method with mixed Gumbel distribution to estimate extreme magnitude of tsunamigenic earthquake.” KSCE Journal of Civil Engineering, 19(2), 366-375.

11.  Rizwan, M., and Kim, T.-W. (2013). “Application of a mixed Gumbel distribution to construct rainfall depth-duration-frequency (DDF) curves considering outlier effect in hydrologic data.” IOSR Journal of Environmental Science, Toxicology and Food Technology, 6(2), 54-60.

12.  Yoon, P., Kim, T.-W., Yoo, C. (2013). “Rainfall frequency analysis using a mixed GEV distribution: a case study for annual maximum rainfalls in South Korea.” Stochastic Environmental Research and Risk Assessment, 27(5), 1143-1153.

13.  Yoo, J.-Y., Kim, U., and Kim, T.-W. (2013). “Bivariate drought frequency curves and confidence intervals: a case study using monthly rainfall generation.” Stochastic Environmental Research and Risk Assessment, 27(1), 285-295,

14.  Lee, J.-J., Kwon, H.-H., and Kim, T.-W. (2012). “Spatio-temporal analysis of extreme precipitation regimes across South Korea and its application to regionalization.” Journal of Hydro-environment Research, 6, 101-110

15.  Seo, L., Kim, T.-W., Choi, M., and Kwon, H.-H. (2012). “Constructing rainfall depth-frequency curves considering a linear trend in rainfall observations.” Stochastic Environmental Research and Risk Assessment, 26, 419-427

16.  Yoo, J.-Y., Kwon, H.-H., Kim, T.-W., and Ahn, J.-H. (2012). “Drought frequency analysis using cluster analysis and bivariate probability distribution.” Journal of Hydroloy, 420-421, 102-111.

17.  Seo, L., Kim, T.-W., and Kwon, H.-H. (2012). “Investigation of trend variations in annual maximum rainfalls in South Korea.” KSCE Journal of Civil Engineering, 16(2), 215-221

18. Choi, M., Kim, T.-W., and Kustas, W.P. (2011). “Reliable estimation of evapotranspiration on agricultural fields predicted by the Priestley-Taylor model using soil moisture data from ground and remote sensing observations compared with the Common Land Model.” International Journal of Remote Sensing, 32(16), 4571-4587.

19. Choi, M., Kim, T.-W., Park, M., and Kim, S.J. (2011). “Evapotranspiration estimation using the Landsat-5 Thematic Mapper image over the Gyungan watershed in Korea.” International Journal of Remote Sensing, 32(15), 4327-4341.

20. Kim, D.-H., Yoo, C., and Kim, T.-W. (2011). “Application of spatial EOF and multivariate time series model for evaluating agricultural drought vulnerability in Korea.” Advances in Water Resources, 34(3), 340-350. (March 2011).

21.  Lee, C.H., Kim, T.-W., Chung, G., Choi, M., and Yoo, C. (2010). “Application of bivariate frequency analysis to the derivation of rainfall-frequency curves.” Stochastic Environmental Research and Risk Assessment, 24, 389-397